Determine the GCF for each of the polynomials.
2x3 – 7x2 + 3x
The GCF is .

33x4 – 22
The GCF is .

24x5 – 56x3 + 16x
The GCF is

Respuesta :


[tex] {2x}^{3} - {7x}^{2} + 3x \\ = x( {2x}^{2} - 7x + 3)[/tex]
GCF is x.

[tex] {33x}^{4} - 22 \\ = 11( {3x}^{4} - 2)[/tex]
GCF is 11.

[tex] {24x}^{5} - {56x}^{3} + 16x \\ = 8x( {3x}^{4} - {7x}^{2} + 2)[/tex]
GCF is 8x.

Hope this helps. - M

The GCF of the polynomials are x,11, and 8x respectively.

We need to determine the GCF for each of the polynomials.

The given polynomials are:

[tex]2x^3 -7x^2+3x\\33x^4-22\\24x^5-56x^3+16x[/tex]

Take the first expression, and take the common variable or constant from each term.

[tex]2x^3-7x^2+3x=x(2x^2-7x+3)[/tex]

Thus, the GCF is x.

Take the second expression, and take the common variable or constant from each term.

[tex]33x^4-22=11(3x^4-2)[/tex]

Thus, the GCF is 11.

Take the third expression, and take the common variable or constant from each term.

[tex]24x^5-56x^3+16x=8x(3x^4-7x^2+2)[/tex]

Thus, the GCF is 8x.

To know more about the GCF, please refer to the link:

https://brainly.com/question/20061090