Respuesta :
We're looking for a scalar function [tex]f(x,y)[/tex] such that
[tex]\nabla f(x,y)=\dfrac{\partial f}{\partial x}\,\mathbf i+\dfrac{\partial f}{\partial y}\,\mathbf j=x^2\,\mathbf i+y^2\,\mathbf j=\mathbf f(x,y)[/tex]
We have
[tex]\dfrac{\partial f}{\partial x}=x^2\implies f(x,y)=\dfrac{x^3}3+g(y)[/tex]
[tex]\implies\dfrac{\partial f}{\partial y}=\dfrac\partial{\partial y}\left[\dfrac{x^3}3+g(y)\right][/tex]
[tex]\implies y^2=\dfrac{\mathrm dg}{\mathrm dy}[/tex]
[tex]\implies g(y)=\dfrac{y^3}+C[/tex]
So
[tex]f(x,y)=\dfrac{x^3+y^3}3+C[/tex]
By the fundamental theorem of calculus (for line integrals), we then have
[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{\mathcal C}\nabla f\cdot\mathrm d\mathbf r=f(0,0)-f(-1,4)=0-21=-21[/tex]
[tex]\nabla f(x,y)=\dfrac{\partial f}{\partial x}\,\mathbf i+\dfrac{\partial f}{\partial y}\,\mathbf j=x^2\,\mathbf i+y^2\,\mathbf j=\mathbf f(x,y)[/tex]
We have
[tex]\dfrac{\partial f}{\partial x}=x^2\implies f(x,y)=\dfrac{x^3}3+g(y)[/tex]
[tex]\implies\dfrac{\partial f}{\partial y}=\dfrac\partial{\partial y}\left[\dfrac{x^3}3+g(y)\right][/tex]
[tex]\implies y^2=\dfrac{\mathrm dg}{\mathrm dy}[/tex]
[tex]\implies g(y)=\dfrac{y^3}+C[/tex]
So
[tex]f(x,y)=\dfrac{x^3+y^3}3+C[/tex]
By the fundamental theorem of calculus (for line integrals), we then have
[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{\mathcal C}\nabla f\cdot\mathrm d\mathbf r=f(0,0)-f(-1,4)=0-21=-21[/tex]
To answer this question, we need to make use of the concept of Potential Function (U)
f = grad U
The solution is:
U = x³/3 + y³/3 + K f = grad×U
b) - 54.41
f( x,y ) = x²×i + y²× j is a vectorial field that could be obtained from the gradient of an scalar, then
f( x, y ) = grad. U if that is true then:
dU/dx = x² ⇒ dU = x²× dx ⇒ Uₓ = x³/3 + g(y)
dU/dy = y² ⇒ according to that
g´(y) = y² ⇒ ∫g´(y) = y³/3 + K plugging that value in Uₓ we get the potential function U, or a family of functions according to constant (K)
U = x³/3 + y³/3 + K
b) To calculate ∫ grad.F * dr
C is the parabola y = 4×x²
we parametrize the curve as:
x = t then y = 4×t² r = ( t , 4×t² ) P ( -1 , 4) to Q ( 0 , 0) for - 1 ≤ t ≤ 0
If x = t dx = dt and dy = 8×t×dt so dr = ( 1 + 8×t ) dt
We choose K = 0 then U = x³/3 + y³/3
then U = ( t³/3 + 64×t⁶ )
∫₋₁⁰ ( t³/3 + 64×t⁶) × ( 1 + 8×t ) dt = ∫ [t³/3 + (8/3)×t⁴ + 64×t⁶ + 512×t⁷ ] ×dt
= t⁴/12 + (8/15)× t⁵ + (64/7) ×t⁷ + 512 /8× t⁸
= t⁴/12 + (8/15)× t⁵ + (64/7) ×t⁷ + 64 ×t⁸ | ₋₁⁰
= - [ 1/12 - 8/15 - 64/7 + 64 ]
= - 54.41
Related Link : https://brainly.com/question/11622971