Find the ratio of the effusion rate of hydrogen gas to the effusion rate of krypton gas. express the ratio of effusion rates to four significant figures.

Respuesta :

The  rate  of  effusion  of  a   gas  is  inversely   proportion  to   the   to  the  square  root   of  the   mass  of  its  particles.
  the  ratio  of  effusion   of  hydrogen  gas  to  krypton  gas  is  calculated  as  follows


Re   of  hydrogen/  Re  of  krypton  = square  root  of  molar   mass  of  krypton/molar  mass  of  hydrogen
 that  is  sqrt of 83.793/2  g/mol =6.47
rate  of  hydrogen =6.47x  rate  of  krypton

The ratio of effusion rate of hydrogen gas to the effusion rate of krypton gas is [tex]\boxed{6.447}[/tex].

Further explanation:

Graham’s law of effusion:

This law describes the relationship between rate of effusion and molar mass of gases. Effusion is the process of motion of gas particles through a small hole from region of high pressure to region of low pressure. According to this law, the effusion rate of a gas is inversely related to the square root of the molar mass of gas.

The expression for Graham’s law is written below.

[tex]{\text{R}} \propto \dfrac{1}{{\sqrt {{\mu }} }}[/tex]  

Where,

R is the rate of effusion of gas.

[tex]{\mu }}[/tex] is the molar mass of gas.

The expression for rate of effusion of   is as follows:

[tex]{{\text{R}}_{{{\text{H}}_2}}} \propto \dfrac{1}{{\sqrt {{{\mu }}_{{{\text{H}}_2}}}} }}[/tex]                                                       …… (1)

Where,

[tex]{{\text{R}}_{{{\text{H}}_{\text{2}}}}}[/tex] is the rate of effusion of [tex]\text{H}_{2}[/tex].

[tex]{{\mu }}_{{{\text{H}}_{\text{2}}}}}[/tex] is the molar mass of [tex]\text{H}_{2}[/tex].

The expression for rate of effusion of Kr is as follows:

[tex]{{\text{R}}_{{\text{Kr}}}} \propto \dfrac{1}{{\sqrt {{{\mu }}_{{\text{Kr}}}}} }}[/tex]                                                       …… (2)

Where,

[tex]{{\text{R}}_{{\text{Kr}}}}[/tex] is the rate of effusion of Kr.

[tex]{{\mu }}_{{\text{Kr}}}}[/tex] is the molar mass of Kr.

Dividing equation (1) by equation (2), we get:

[tex]\dfrac{{{{\text{R}}_{{{\text{H}}_2}}}}}{{{{\text{R}}_{{\text{Kr}}}}}} = \sqrt {\dfrac{{{\mu }}_{{\text{Kr}}}}{{{{\mu }}_{{{\text{H}}_2}}}}}}[/tex]                                                     ...... (3)

Molar mass of [tex]\text{H}_{2}[/tex] is 2.01588 g/mol.

Molar mass of Kr is 83.798 g/mol.

Substitute these values in equation (3).

[tex]\begin{aligned}\dfrac{{{{\text{R}}_{{{\text{H}}_2}}}}}{{{{\text{R}}_{{\text{Kr}}}}}} &= \sqrt {\frac{{{\text{83}}{\text{.798 g/mol}}}}{{2.01588{\text{ g/mol}}}}}\\&= 6.447 \\\end{aligned}[/tex]  

Learn more:

  1. Which statement is true for Boyle’s law: https://brainly.com/question/1158880
  2. Calculation of volume of gas: https://brainly.com/question/3636135

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Ideal gas equation

Keywords: Effusion, rate of effusion, Graham’s law of effusion, molar mass, H2, Kr, 6.447, 2.01588 g/mol, 83.798 g/mol.