Respuesta :
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/2927231
————————
You can actually use either the product rule or the chain rule for this one. Observe:
• Method I:
y = cos² x
y = cos x · cos x
Differentiate it by applying the product rule:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x\cdot cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x)\cdot cos\,x+cos\,x\cdot \dfrac{d}{dx}(cos\,x)}[/tex]
The derivative of cos x is – sin x. So you have
[tex]\mathsf{\dfrac{dy}{dx}=(-sin\,x)\cdot cos\,x+cos\,x\cdot (-sin\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=-sin\,x\cdot cos\,x-cos\,x\cdot sin\,x}[/tex]
[tex]\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark[/tex]
—————
• Method II:
You can also treat y as a composite function:
[tex]\left\{\! \begin{array}{l} \mathsf{y=u^2}\\\\ \mathsf{u=cos\,x} \end{array} \right.[/tex]
and then, differentiate y by applying the chain rule:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(u^2)\cdot \dfrac{d}{dx}(cos\,x)}[/tex]
For that first derivative with respect to u, just use the power rule, then you have
[tex]\mathsf{\dfrac{dy}{dx}=2u^{2-1}\cdot \dfrac{d}{dx}(cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=2u\cdot (-sin\,x)\qquad\quad (but~~u=cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=2\,cos\,x\cdot (-sin\,x)}[/tex]
and then you get the same answer:
[tex]\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark[/tex]
I hope this helps. =)
Tags: derivative chain rule product rule composite function trigonometric trig squared cosine cos differential integral calculus
————————
You can actually use either the product rule or the chain rule for this one. Observe:
• Method I:
y = cos² x
y = cos x · cos x
Differentiate it by applying the product rule:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x\cdot cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x)\cdot cos\,x+cos\,x\cdot \dfrac{d}{dx}(cos\,x)}[/tex]
The derivative of cos x is – sin x. So you have
[tex]\mathsf{\dfrac{dy}{dx}=(-sin\,x)\cdot cos\,x+cos\,x\cdot (-sin\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=-sin\,x\cdot cos\,x-cos\,x\cdot sin\,x}[/tex]
[tex]\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark[/tex]
—————
• Method II:
You can also treat y as a composite function:
[tex]\left\{\! \begin{array}{l} \mathsf{y=u^2}\\\\ \mathsf{u=cos\,x} \end{array} \right.[/tex]
and then, differentiate y by applying the chain rule:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(u^2)\cdot \dfrac{d}{dx}(cos\,x)}[/tex]
For that first derivative with respect to u, just use the power rule, then you have
[tex]\mathsf{\dfrac{dy}{dx}=2u^{2-1}\cdot \dfrac{d}{dx}(cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=2u\cdot (-sin\,x)\qquad\quad (but~~u=cos\,x)}\\\\\\ \mathsf{\dfrac{dy}{dx}=2\,cos\,x\cdot (-sin\,x)}[/tex]
and then you get the same answer:
[tex]\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark[/tex]
I hope this helps. =)
Tags: derivative chain rule product rule composite function trigonometric trig squared cosine cos differential integral calculus