Respuesta :

The expression which is not equivalent to the provided expression is expression number 1, x²(-4x+1)-2(3x-4).

What is the equivalent expression?

Equivalent expressions are the expression whose result is equal to the original expression, but the way of representation is different.

The expression given in the problem is

f(x)=-4x³+x²-6x+8

The option given as,

  • (1) x² (-4x+1)-2(3x-4)
  • (2) x(-4x²- x + 6) + 8
  • (3) -4x³ + (x - 2)(x - 4)
  • (4) -4(x³ - 2) + x(x - 6)

From the given expression, if we take out x from the first three terms, it looks like option 2.

f(x)=-4x³+x²-6x+8

f(x)=x(-4x²+x-6)+8

From the given expression, if the last three terms factored, it looks like option 3.

f(x)=-4x³+x²-6x+8

f(x)=-4x³+x^2-4x-2x+8

f(x)=-4x³+x(x-4)-2(x-4)

f(x)=-4x³+(x-4)(x-2)

Rearrange the given expression, and make it looks like option 4.

f(x)=-4x³+x²-6x+8

f(x)=-4x²+8+x²-6x

f(x)=-4(x³-2)+x(x-6)

Thus, the expression which is not equivalent to the provided expression is expression number 1, x²(-4x+1)-2(3x-4).

Learn more about the equivalent expression here;

https://brainly.com/question/2972832

#SPJ1