Respuesta :
Answer:
[tex]\displaystyle \int\limits^5_3 {\bigg( e^{3x} + 7 \cos x - 3 \tan^3 x \bigg)} \, dx = \frac{e^{15} - e^9}{3} + 7 \bigg( \sin 5 - \sin 3 \bigg) - 3 \bigg( \frac{\sec^2 5 - \sec^2 3}{2} - \ln \bigg| \frac{\cos 3}{\cos 5} \bigg| \bigg)[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle (cu)' = cu'[/tex]
Derivative Property [Addition/Subtraction]:
[tex]\displaystyle (u + v)' = u' + v'[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Integration Method: U-Substitution + U-Solve
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \int\limits^5_3 {\bigg( e^{3x} + 7 \cos x - 3 \tan^3 x \bigg)} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Rule - Addition/Subtraction]:
[tex]\displaystyle \int\limits^5_3 {\bigg( e^{3x} + 7 \cos x - 3 \tan^3 x \bigg)} \, dx = \int\limits^5_3 {e^{3x}} \, dx + \int\limits^5_3 {7 \cos x} \, dx - \int\limits^5_3 {3 \tan^3 x} \, dx[/tex] - [Integrals] Rewrite [Integration Property - Multiplied Constant]:
[tex]\displaystyle \int\limits^5_3 {\bigg( e^{3x} + 7 \cos x - 3 \tan^3 x \bigg)} \, dx = \int\limits^5_3 {e^{3x}} \, dx + 7 \int\limits^5_3 {\cos x} \, dx - 3 \int\limits^5_3 {\tan^3 x} \, dx[/tex] - [3rd Integral] Rewrite:
[tex]\displaystyle \int\limits^5_3 {\bigg( e^{3x} + 7 \cos x - 3 \tan^3 x \bigg)} \, dx = \int\limits^5_3 {e^{3x}} \, dx + 7 \int\limits^5_3 {\cos x} \, dx - 3 \int\limits^5_3 {\tan^2 x \bigg( \sec^2 x - 1 \bigg)} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution and u-solve.
1st Integral
- Set u:
[tex]\displaystyle u = 3x[/tex] - [u] Differentiate [Derivative Properties and Rules]:
[tex]\displaystyle du = 3 \, dx[/tex] - [Bounds] Swap:
[tex]\displaystyle \left \{ {{x = 5 \rightarrow u = 3(5) = 15} \atop {x = 3 \rightarrow u = 3(3) = 9}} \right.[/tex]
3rd Integral
- Set v:
[tex]\displaystyle v = \sec x[/tex] - [v] Differentiate [Trigonometric Differentiation]:
[tex]\displaystyle dv = \sec x \tan x \, dx[/tex] - [dv] Rewrite:
[tex]\displaystyle dx = \frac{1}{\sec x \tan x} \, dv[/tex]
Step 4: Integrate Pt. 3
Let's focus on the 3rd integral first.
- Apply Integration Method [U-Solve]:
[tex]\displaystyle 3 \int\limits^5_3 {\tan^2 x \bigg( \sec^2 x - 1 \bigg)} \, dx = 3 \int\limits^{x = 5}_{x = 3} {\frac{v^2 - 1}{v}} \, dv[/tex] - [Integral] Rewrite [Integration Property - Addition/Subtraction]:
[tex]\displaystyle 3 \int\limits^5_3 {\tan^2 x \bigg( \sec^2 x - 1 \bigg)} \, dx = 3 \Bigg( \int\limits^{x = 5}_{x = 3} {v} \, dv - \int\limits^{x = 5}_{x = 3} {\frac{1}{v}} \, dv \Bigg)[/tex] - [Integrals] Apply Integration Rules [Reverse Power Rule and Logarithmic Integration]:
[tex]\displaystyle 3 \int\limits^5_3 {\tan^2 x \bigg( \sec^2 x - 1 \bigg)} \, dx = 3 \Bigg( \frac{v^2}{2} \bigg| \limits^{x = 5}_{x = 3} - \ln | v | \bigg| \limits^{x = 5}_{x = 3} \Bigg)[/tex] - [v] Back-Substitute:
[tex]\displaystyle 3 \int\limits^5_3 {\tan^2 x \bigg( \sec^2 x - 1 \bigg)} \, dx = 3 \Bigg( \frac{\sec^2 x}{2} \bigg| \limits^{5}_{3} - \ln | \sec x | \bigg| \limits^{5}_{3} \Bigg)[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
[tex]\displaystyle 3 \int\limits^5_3 {\tan^2 x \bigg( \sec^2 x - 1 \bigg)} \, dx = 3 \Bigg( \frac{\sec^2 5 - \sec^2 3}{2}- \ln \bigg| \frac{\cos 3}{\cos 5} \bigg| \Bigg)[/tex]
Step 5: Integrate Pt. 4
Focus on the other 2 integrals and solve using integration techniques listed above.
1st Integral:
[tex]\displaystyle\begin{aligned}\int\limits^5_3 {e^{3x}} \, dx & = \frac{1}{3} \int\limits^5_3 {3e^{3x}} \, dx \\& = \frac{1}{3} \int\limits^{15}_9 {e^{u}} \, du \\& = \frac{1}{3} e^u \bigg| \limits^{15}_9 \\& = \frac{1}{3} \bigg( e^{15} - e^9 \bigg)\end{aligned}[/tex]
2nd Integral:
[tex]\displaystyle\begin{aligned}7 \int\limits^5_3 {\cos x} \, dx & = 7 \sin x \bigg| \limits^5_3 \\& = 7 \bigg( \sin 5 - \sin 3 \bigg)\end{aligned}[/tex]
Step 6: Integrate Pt. 5
- [Integrals] Substitute in integrals:
[tex]\displaystyle \int\limits^5_3 {\bigg( e^{3x} + 7 \cos x - 3 \tan^3 x \bigg)} \, dx = \frac{e^{15} - e^9}{3} + 7 \bigg( \sin 5 - \sin 3 \bigg) - 3 \bigg( \frac{\sec^2 5 - \sec^2 3}{2} - \ln \bigg| \frac{\cos 3}{\cos 5} \bigg| \bigg)[/tex]
∴ we have evaluated the integral.
---
Learn more about integration: https://brainly.com/question/27026907
Learn more about calculus: https://brainly.com/question/20158587
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Answer:
1086950.36760
Formula's used:
[tex]\rightarrow \sf \int sin(ax+b)=-\dfrac{1}{a} cos(ax+b)+c[/tex]
[tex]\rightarrow \sf \int cos(ax+b)=\dfrac{1}{a} sin(ax+b)+c[/tex]
[tex]\rightarrow \sf \int \dfrac{1}{ax+b} =\dfrac{1}{a} ln|ax+b|+c[/tex]
[tex]\rightarrow \sf \int e^{ax+b}=\dfrac{1}{a} e^{ax+b} + c[/tex]
[tex]\rightarrow \bold{ ln|a| - ln|b| = ln|\frac{a}{b} | }[/tex]
Explanation:
[tex]\dashrightarrow \sf \int \left(e^{3x}+7cos\left(x\right)-3tan^3\left(x\right)\right)[/tex]
apply sum rule: [tex]\bold{\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx}[/tex]
[tex]\dashrightarrow \sf \int \:e^{3x}dx+\int \:7\cos \left(x\right)dx-\int \:3\tan ^3\left(x\right)dx[/tex]
Integrate simple followings first, using formula's given above
[tex]\dashrightarrow \sf \dfrac{1}{3}e^{3x}+7\sin \left(x\right)-\int 3tan^3x[/tex]
Breakdown the component
[tex]\dashrightarrow \sf \dfrac{1}{3}e^{3x}+7\sin \left(x\right)-3\int tan^2x(tanx)[/tex]
[ tan²x = sec²x - 1 ]
[tex]\dashrightarrow \sf \dfrac{1}{3}e^{3x}+7\sin \left(x\right)-3\int (sec^2x-1)(tanx)[/tex]
===========================================================
for integration of [tex]\bold{\int (sec^2x-1)(tanx)}[/tex]
apply substitution ... u
[tex]\dashrightarrow \int \dfrac{-1+u^2}{u}[/tex]
[tex]\dashrightarrow \sf \int \:-\dfrac{1}{u}+udu[/tex]
[tex]\dashrightarrow \sf - \int \dfrac{1}{u}du+\int \:udu[/tex]
[tex]\dashrightarrow -\ln \left|u\right|+\dfrac{u^2}{2}[/tex]
substitute back u = sec(x)
[tex]\dashrightarrow \sf-\ln \left|\sec \left(x\right)\right|+\dfrac{\sec ^2\left(x\right)}{2}[/tex]
================================================= insert back
[tex]\dashrightarrow \sf \dfrac{1}{3}e^{3x}+7\sin \left(x\right)-3\left(-\ln \left|\sec \left(x\right)\right|+\dfrac{\sec ^2\left(x\right)}{2}\right)[/tex] outcome after integrating
Now apply the given limits
[tex]\sf \hookrightarrow \sf \dfrac{1}{3}e^{3(5)}+7\sin \left(5\right)-3\left(-\ln \left|\sec \left(5\right)\right|+\dfrac{\sec ^2\left(5\right)}{2}\right) - (\sf \dfrac{1}{3}e^{3(3)}+7\sin \left(3\right)-3\left(-\ln \left|\sec \left(3\right)\right|+\dfrac{\sec ^2\left(3\right)}{2}\right))[/tex]
simplify
[tex]\sf \hookrightarrow \sf \dfrac{1}{3}e^{15}+7\sin \left(5\right)-3\left(-\ln \left|\sec \left(5\right)\right|+\dfrac{\sec ^2\left(5\right)}{2}\right) - (\sf \dfrac{1}{3}e^{9}+7\sin \left(3\right)-3\left(-\ln \left|\sec \left(3\right)\right|+\dfrac{\sec ^2\left(3\right)}{2}\right))[/tex]
and group the variables
[tex]\sf \hookrightarrow \dfrac{e^{15}-e^9}{3}-\dfrac{3}{2\cos ^2\left(5\right)}+\dfrac{3}{2\cos ^2\left(3\right)}+7\sin \left(5\right)-7\sin \left(3\right)+3\ln \left(\dfrac{1}{\cos \left(5\right)}\right)-3\ln \left(-\dfrac{1}{\cos \left(3\right)}\right)[/tex]
value:
[tex]\sf \hookrightarrow 1086950.36760[/tex]