Respuesta :

Answer:

A) 21 in²

B) 42 in²

C) 84 in²

D) I) 4 in²

II) 8 in²

III) 16 in²

E) From our calculations, we can see that doubling one part of the dimensions gives an area that is twice the original one while doubling both dimensions gives an area that four times the original one.

Step-by-step explanation:

We are given dimensions of triangle as;

width; w = 3 inches

length; L = 7 inches

A) Area of triangle is;

A = Lw

A = 7 × 3

A = 21 in²

B) If we double the width, then area is;

A = 7 × (2 × 3)

A = 42 in²

Area is twice the original area

C) If we double the width and length, then we have;

Length = 7 × 2 = 14 in

Width = 3 × 2 = 6 in

Area = 14 × 6 = 84 in²

Area is four times the original one

D) Let's try a triangle with base 2 in and height 4 in.

I) formula for area of triangle is;

A = ½ × base × height

A = ½ × 2 × 4

A = 4 in²

II) If we double the width(base) , then area is;

A = ½ × 2 × 2 × 4

A = 8 in²

This is twice the original area.

III) If we double the width(base) and length(height), then we have;

A = ½ × 2 × 2 × 4 × 2

A = 16 in²

This is four times the original area

E) From our calculations, we can see that doubling one part of the dimensions gives an area that is twice the original one while doubling both dimensions gives an area that four times the original one.