(a) Decompose the summand into partial fractions:
[tex]\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}[/tex]
[tex]\implies 5=a(n+1)+bn=(a+b)n+a[/tex]
[tex]\implies a+b=0\text{ and }a=5 \implies b=-5[/tex]
[tex]\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)[/tex]
The n-th partial sum for the series is
[tex]S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)[/tex]
which can be simplified significantly by examinging consective terms in the sum:
[tex]\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)[/tex]
[tex]\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}[/tex]
(b) Using the result of (a), you then get
[tex]\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}[/tex]
(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.