Which golf ball went higher, and how many feet? (Desmos!)

Answer:
1. 36
2. Second
Step-by-step explanation:
- For the first ball, we can see the given function:
[tex]f(x)=-16(t^{2}-3t )[/tex]
[tex]=-16[t^{2} -3t+(3/2)^{2}-(3/2)^{2} ][/tex]
[tex]=-16(t-\frac{3}{2} )^{2} +(-\frac{3}{2} )^{2} *(-16)[/tex]
[tex]-16(t-\frac{3}{2} )^{2} +36[/tex]
So the vertex is ([tex]\frac{3}{2}[/tex], 36), it means when the ball was hit by the [tex]\frac{3}{2}[/tex] seconds, it arrived at the highest height of 36 feet.
- For the second ball, we can see the given graph: the vertex is (2,64), it means when the ball was hit by the 2 seconds, it arrived at the highest height of 64 feet.
- Compare to the two heights, 36 (first ball) is less than 64 (second ball), so the second ball went higher.