Given the wavelength of the visible light photon, the energy of the photon is 3.54 × 10⁻¹⁹J
Given the data in the question;
Wavelength of visible light; [tex]\lambda = 560.6 nm = 5.606*10^{-7}m[/tex]
Speed of light; [tex]c = 2.998 * 10^8 m/s[/tex]
Planck's constant; [tex]h = 6.626 * 10^{-34} J.s[/tex]
The energy and wavelength of light are related by the equation:
[tex]E = \frac{hc}{\lambda}[/tex]
Where E is energy of photon in Joules, h is Planck's constant, c is the speed of light and λ is the wavelength,
We substitute our given value into the equation
[tex]E = \frac{(6.626*10^{-34}J.s)(2.998*10^8m/s)}{5.606*10^{-7}m} \\\\E = \frac{(1.986*10^{-25}J.m}{5.606*10^{-7}m}\\\\E = 3.54 * 10^{-19}J[/tex]
Therefore, given the wavelength of the visible light photon, the energy of the photon is 3.54 × 10⁻¹⁹J
Learn more: https://brainly.com/question/14683743