xKelvin
contestada

Prove the following integration formula:
[tex]\displaystyle \int e^{au}\sin(bu)\, du=\frac{e^{au}}{a^2+b^2}(a\sin(bu)-b\cos(bu))+C[/tex]

Respuesta :

Space

Answer:

See Explanation.

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property
  • Equality Properties

Algebra I

  • Combining Like Terms
  • Factoring

Calculus

  • Derivative 1:                  [tex]\frac{d}{dx} [e^u]=u'e^u[/tex]
  • Integration Constant C
  • Integral 1:                      [tex]\int {e^x} \, dx = e^x + C[/tex]
  • Integral 2:                     [tex]\int {sin(x)} \, dx = -cos(x) + C[/tex]
  • Integral 3:                     [tex]\int {cos(x)} \, dx = sin(x) + C[/tex]
  • Integral Rule 1:             [tex]\int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
  • Integration by Parts:    [tex]\int {u} \, dv = uv - \int {v} \, du[/tex]
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

Step 1: Define Integral

[tex]\int {e^{au}sin(bu)} \, du[/tex]

Step 2: Identify Variables Pt. 1

Using LIPET, we determine the variables for IBP.

Use Int Rules 2 + 3.

[tex]u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}[/tex]

Step 3: Integrate Pt. 1

  1. Integrate [IBP]:                                           [tex]\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du[/tex]
  2. Integrate [Int Rule 1]:                                                [tex]\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du[/tex]

Step 4: Identify Variables Pt. 2

Using LIPET, we determine the variables for the 2nd IBP.

Use Int Rules 2 + 3.

[tex]u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}[/tex]

Step 5: Integrate Pt. 2

  1. Integrate [IBP]:                                                  [tex]\int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du[/tex]
  2. Integrate [Int Rule 1]:                                    [tex]\int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du[/tex]

Step 6: Integrate Pt. 3

  1. Integrate [Alg - Back substitute]:     [tex]\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du][/tex]
  2. [Integral - Alg] Distribute Brackets:          [tex]\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du[/tex]
  3. [Integral - Alg] Isolate Original Terms:     [tex]\int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}[/tex]
  4. [Integral - Alg] Rewrite:                                [tex](\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}[/tex]
  5. [Integral - Alg] Isolate Original:                                    [tex]\int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}[/tex]
  6. [Integral - Alg] Rewrite Fraction:                          [tex]\int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }[/tex]
  7. [Integral - Alg] Combine Like Terms:                          [tex]\int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }[/tex]
  8. [Integral - Alg] Divide:                                  [tex]\int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}[/tex]
  9. [Integral - Alg] Multiply:                               [tex]\int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)][/tex]
  10. [Integral - Alg] Factor:                                 [tex]\int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)][/tex]
  11. [Integral] Integration Constant:                     [tex]\int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C[/tex]

And we have proved the integration formula!

Prove: [tex]\displaystyle \int e^a^u sin(bu)\ du = \frac{e^a^u}{a^2+b^2} (a \ sin(bu) - b \ cos(bu)) + C[/tex]

Integration by parts formula: [tex]\displaystyle \int udv = uv - \int vdu[/tex]

Find u, du, v, and dv for this function: [tex]\displaystyle \int e^a^u sin(bu)[/tex]

  • [tex]\displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = -\frac{cos(bu)}{b} \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu) \ du[/tex]

Plug these values into the IBP formula.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = e^a^u \cdot \frac{-cos(bu)}{b} - \int -\frac{cos(bu)}{b} \cdot ae^a^u \ du[/tex]

Multiply and simplify the factors. Factor the negative out of the integral.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} +\int \frac{a \ cos(bu) \ e^a^u}{b} \ du[/tex]

Factor out a/b from the integral.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a}{b} \int cos(bu) \ e^a^u \ du[/tex]

Now we are going to apply IBP to the function: [tex]\displaystyle \int cos(bu) \ e^a^u[/tex] . Find u, du, v, and dv for this function.

  • [tex]\displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b} \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu) \ du[/tex]

Plug these values into the IBP formula.

  • [tex]\displaystyle \int e^a^u cos(bu) \ du = e^a^u \cdot \frac{sin(bu)}{b} - \int \frac{sin(bu)}{b} \cdot ae^a^u \ du[/tex]

Multiply and simplify the factors.

  • [tex]\displaystyle \int e^a^u cos(bu) \ du = \frac{e^a^u \ sin(bu)}{b} - \int \frac{a \ sin(bu)\ e^a^u}{b} \ du[/tex]

Factor out a/b from the integral.

  • [tex]\displaystyle \int e^a^u cos(bu) \ du = \frac{e^a^u \ sin(bu)}{b} - \frac{a}{b} \int sin(bu)\ e^a^u} \ du[/tex]

Notice that we have the same integral we started with. Let's plug this integral into the original IBP we did.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a}{b} \big{[ }\frac{e^a^u sin(bu)}{b} - \frac{a}{b} \int sin(bu) \ e^a^u \ du \big{]}}[/tex]

Distribute a/b inside the parentheses.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a \ e^a^u sin(bu)}{b^2} - \frac{a^2}{b^2} \int sin(bu) \ e^a^u \ du[/tex]

Factor 1/b out of the right side of the equation.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = \frac{1}{b}\big{[} -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} - \frac{a^2}{b} \int sin(bu) \ e^a^u \ du \big{]}[/tex]

Multiply both sides by b to get rid of 1/b.

  • [tex]\displaystyle b \int e^a^u sin(bu) \ du = -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} - \frac{a^2}{b} \int sin(bu) \ e^a^u \ du[/tex]

Add the integral to both sides of the equation.

  • [tex]\displaystyle b \int e^a^u sin(bu) \ du + \frac{a^2}{b} \int sin(bu) \ e^a^u \ du= -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)}[/tex]

Factor the integral on the left side.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du \ \big{(} b + \frac{a^2}{b} \big{)}= -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)}[/tex]

[tex]\displaystyle \big{(}b+\frac{a^2}{b} \big{)} = \frac{b^2+a^2}{b}[/tex], so we can multiply both sides of the equation by [tex]\displaystyle \frac{b}{a^2+b^2}[/tex].

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} \big{(} \frac{b}{a^2+b^2} \big{)}[/tex]

Simplify the equation before multiplying everything by [tex]\displaystyle \frac{b}{a^2+b^2}[/tex].

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = \big{(}\frac{-e^a^u cos(bu) \ b + a \ e^a^u sin(bu)}{b} \big{)} \big{(} \frac{b}{a^2+b^2} \big{)}[/tex]

Multiply the two factors together. Notice that the two b's in the denominator and numerator, respectively, cancel out. We are left with:

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = \big{(}\frac{-e^a^u cos(bu) \ b + a \ e^a^u sin(bu)}{a^2+b^2} \big{)}[/tex]

Factor [tex]\displaystyle e^a^u[/tex] from the numerator.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = \big{(}\frac{e^a^u( -b \ cos(bu) \ + a \ sin(bu)}{a^2+b^2} \big{)}[/tex]

Split the numerator and denominator to make it appear the same as the original question.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = \frac{e^a^u}{a^2+b^2} \big{(} a \ sin(bu) - b \ cos(bu) \big{)}[/tex]

Since we are taking the integral of something, we can add a +C at the end to complete the problem.

  • [tex]\displaystyle \int e^a^u sin(bu) \ du = \frac{e^a^u}{a^2+b^2} \big{(} a \ sin(bu) - b \ cos(bu) \big{)} + C[/tex]

This is equivalent to the proof that we are given, therefore, we proved the integral correctly.