contestada

A person throws a stone from the corner edge of a building. The stone's initial velocity is 28.0 m/s directed at 43.0° above the horizontal. The stone hits tip of a structure which is 5 m tall, 6.1 s after being thrown. Ignore air resistance.
(a) What is the height of the building?
(b) How far from the foot of the building does the stone land (only horizontal distance until the foot of the structure)?
(c) How fast is the stone moving just before it hits the ground?
(d) Please write down the acceleration vector in the unit vector notation for the stone at the instant it hits the ground.

Respuesta :

The stone's acceleration, velocity, and position vectors at time [tex]t[/tex] are

[tex]\mathbf a(t)=-g\,\mathbf j[/tex]

[tex]\mathbf v(t)=v_{i,x}\,\mathbf i+\left(v_{i,y}-gt\right)\,\mathbf j[/tex]

[tex]\mathbf r(t)=v_{i,x}t\,\mathbf i+\left(y_i+v_{i,y}t-\dfrac g2t^2\right)\,\mathbf j[/tex]

where

[tex]g=9.80\dfrac{\rm m}{\mathrm s^2}[/tex]

[tex]v_{i,x}=\left(28.0\dfrac{\rm m}{\rm s}\right)\cos43.0^\circ\approx20.478\dfrac{\rm m}{\rm s}[/tex]

[tex]v_{i,y}=\left(28.0\dfrac{\rm m}{\rm s}\right)\sin43.0^\circ\approx19.096\dfrac{\rm m}{\rm s}[/tex]

and [tex]y_i[/tex] is the height of the building and initial height of the rock.

(a) After 6.1 s, the stone has a height of 5 m. Set the vertical component [tex](\mathbf j)[/tex] of the position vector to 5 m and solve for [tex]y_i[/tex]:

[tex]5\,\mathrm m=y_i+\left(19.096\dfrac{\rm m}{\rm s}\right)(6.1\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.1\,\mathrm s)^2[/tex]

[tex]\implies\boxed{y_i\approx70.8\,\mathrm m}[/tex]

(b) Evaluate the horizontal component [tex](\mathbf i)[/tex] of the position vector when [tex]t=6.1\,\mathrm s[/tex]:

[tex]\left(20.478\dfrac{\rm m}{\rm s}\right)(6.1\,\mathrm s)\approx\boxed{124.92\,\mathrm m}[/tex]

(c) The rock's velocity vector has a constant horizontal component, so that

[tex]v_{f,x}=v_{i,x}\approx20.478\dfrac{\rm m}{\rm s}[/tex]

where [tex]v_{f,x}[/tex]

For the vertical component, recall the formula,

[tex]{v_{f,y}}^2-{v_{i,y}}^2=2a\Delta y[/tex]

where [tex]v_{i,y}[/tex] and [tex]v_{f,y}[/tex] are the initial and final velocities, [tex]a[/tex] is the acceleration, and [tex]\Delta y[/tex] is the change in height.

When the rock hits the ground, it will have height [tex]y_f=0[/tex]. It's thrown from a height of [tex]y_i[/tex], so [tex]\Delta y=-y_i[/tex]. The rock is effectively in freefall, so [tex]a=-g[/tex]. Solve for [tex]v_{f,y}[/tex]:

[tex]{v_{f,y}}^2-\left(19.096\dfrac{\rm m}{\rm s}\right)^2=2(-g)(-124.92\,\mathrm m)[/tex]

[tex]\implies v_{f,y}\approx-53.039\dfrac{\rm m}{\rm s}[/tex]

(where we took the negative square root because we know that [tex]v_{f,y}[/tex] points in the downward direction)

So at the moment the rock hits the ground, its velocity vector is

[tex]\mathbf v_f=\left(20.478\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(-53.039\dfrac{\rm m}{\rm s}\right)\,\mathbf j[/tex]

which has a magnitude of

[tex]\|\mathbf v_f\|=\sqrt{\left(20.478\dfrac{\rm m}{\rm s}\right)^2+\left(-53.039\dfrac{\rm m}{\rm s}\right)^2}\approx\boxed{56.855\dfrac{\rm m}{\rm s}}[/tex]

(d) The acceleration vector stays constant throughout, so

[tex]\mathbf a(t)=\boxed{-g\,\mathbf j}[/tex]