Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup. You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured 1.1 Hz, for the 2 kg weight you measured 0.8 Hz. a) Find k (spring constant) and c (damping constant). Find a formula for the mass in terms of the frequency in Hz. Note that there may be more than one possible mass for a given frequency. b) For an unknown object you measured 0.2 Hz, what is the mass of the object

Respuesta :

Answer:

a). C = b/2   and C = b/4

b).  [tex]$ \therefore T = 2 \pi \sqrt{\frac{m_1 +m_2}{k (m_1 + m_2)}} = 2 \pi \sqrt{ \mu/k}$[/tex]

c). m = 63.4 kg (approx.)

Explanation:

Ex. 2.4.4

The total force acting on mass m is [tex]$ F = F_{spring }= -kx $[/tex] , where x is the displacement from the equilibrium position.

The equation of motion is [tex]$ m {\overset{..}x} + kx = 0 $[/tex]

or [tex]$ {\overset{..}x}+ \frac{k}{m}x=0 $[/tex]     or   [tex]$ {\overset{..}x} + w_0^2 x = 0 $[/tex] ,    where [tex]$ w_0 = \sqrt{\frac{k}{m}} $[/tex]  

The solution is [tex]$ x = A \cos (w_0t + \phi) $[/tex] ,  where A and Ф are constants.

A is amplitude of  motion

[tex]$ w_0$[/tex] is the angular frequency of motion

Ф is the phase angle.

Now, [tex]$ w_0 = 2 \pi f_0 = \sqrt{k/m} $[/tex]

or [tex]$ m = \frac{k}{4\pi f_0^2} $[/tex]

Given [tex]$ f_0 = 0.8 Hz , k = 4 N/m $[/tex]

a).  [tex]$ m = \frac{4}{4(3.14)^2(0.8)^2} = 0.158\ kg$[/tex]

b). [tex]$ w_0^2 = k/m $[/tex]  

or  [tex]$ m = k/ w_0^2 = k / (2\pi f_0)^2 = k / 4 \pi^2 f_0^2 $[/tex]

Ex. 2.4.5

a). Total force acting on the mass m is [tex]$F = F_{spring}+f $[/tex]

                                                                    [tex]$ = -kx-bv $[/tex]

    The equation of motion is [tex]$ m {\overset{..}x}= -kx-b{\overset{.}x} $[/tex]

    or [tex]$ w_0 = \sqrt{\frac{k}{m}} $[/tex] ,  angular frequency of the undamped oscillation.

   γ = b/2m  is called the damping coefficient (γ=C)

   [tex]$ k = m w_0^2 = 4 \pi^2 m f_0^2 $[/tex]

   for 1 kg weight (= 9.8 N), [tex]$ f_0$[/tex] = 1.1 Hz

    k = 4 x (3.14)² x (9.8) x 1.1²  = 4.6 x 10² N/m

  For 2 kg weight (= 19.6 N), [tex]$ f_0$[/tex] = 0.8 Hz

    k = 4 x 9.8596 x 2 x 9.8 x 0.8²  = 5 x [tex]$ 10^7$[/tex] N/m

   [tex]$ \gamma = \frac{b}{2m_1} = \frac{b}{2m_2} $[/tex]

or [tex]$ \gamma = \frac{b}{2 \times 1} = \frac{b}{2 \times 2} $[/tex]

γ = b/2 (for 1 kg)  and   γ = b/4 (for 2 kg)

C = b/2   and C = b/4

b). [tex]$ w_0^2 = \frac{k}{m} \Rightarrow \frac{k}{w_0^2} = \frac{k}{(2 \pi f_0)^2} = \frac{k}{4 \pi^2 f_0^2} $[/tex]

 For two particle problem,

   [tex]$ w'_0^2 = \sqrt{\frac{k(m_1+m_2)}{m_1 +m_2}} $[/tex]

[tex]$ \therefore T = 2 \pi \sqrt{\frac{m_1 +m_2}{k (m_1 + m_2)}} = 2 \pi \sqrt{ \mu/k}$[/tex]

where, μ is the reduced mass.

This time period is same for both the particles.

c). [tex]$ m =\frac{k}{4 \pi^2 f_0^2}$[/tex]

        [tex]$ = \frac{5 \times 10^2}{4 \times 9.14^2 \times 0.2} = 63.4\ kg $[/tex]  ( approx.)