Respuesta :
Answer:
a). C = b/2 and C = b/4
b). [tex]$ \therefore T = 2 \pi \sqrt{\frac{m_1 +m_2}{k (m_1 + m_2)}} = 2 \pi \sqrt{ \mu/k}$[/tex]
c). m = 63.4 kg (approx.)
Explanation:
Ex. 2.4.4
The total force acting on mass m is [tex]$ F = F_{spring }= -kx $[/tex] , where x is the displacement from the equilibrium position.
The equation of motion is [tex]$ m {\overset{..}x} + kx = 0 $[/tex]
or [tex]$ {\overset{..}x}+ \frac{k}{m}x=0 $[/tex] or [tex]$ {\overset{..}x} + w_0^2 x = 0 $[/tex] , where [tex]$ w_0 = \sqrt{\frac{k}{m}} $[/tex]
The solution is [tex]$ x = A \cos (w_0t + \phi) $[/tex] , where A and Ф are constants.
A is amplitude of motion
[tex]$ w_0$[/tex] is the angular frequency of motion
Ф is the phase angle.
Now, [tex]$ w_0 = 2 \pi f_0 = \sqrt{k/m} $[/tex]
or [tex]$ m = \frac{k}{4\pi f_0^2} $[/tex]
Given [tex]$ f_0 = 0.8 Hz , k = 4 N/m $[/tex]
a). [tex]$ m = \frac{4}{4(3.14)^2(0.8)^2} = 0.158\ kg$[/tex]
b). [tex]$ w_0^2 = k/m $[/tex]
or [tex]$ m = k/ w_0^2 = k / (2\pi f_0)^2 = k / 4 \pi^2 f_0^2 $[/tex]
Ex. 2.4.5
a). Total force acting on the mass m is [tex]$F = F_{spring}+f $[/tex]
[tex]$ = -kx-bv $[/tex]
The equation of motion is [tex]$ m {\overset{..}x}= -kx-b{\overset{.}x} $[/tex]
or [tex]$ w_0 = \sqrt{\frac{k}{m}} $[/tex] , angular frequency of the undamped oscillation.
γ = b/2m is called the damping coefficient (γ=C)
[tex]$ k = m w_0^2 = 4 \pi^2 m f_0^2 $[/tex]
for 1 kg weight (= 9.8 N), [tex]$ f_0$[/tex] = 1.1 Hz
k = 4 x (3.14)² x (9.8) x 1.1² = 4.6 x 10² N/m
For 2 kg weight (= 19.6 N), [tex]$ f_0$[/tex] = 0.8 Hz
k = 4 x 9.8596 x 2 x 9.8 x 0.8² = 5 x [tex]$ 10^7$[/tex] N/m
[tex]$ \gamma = \frac{b}{2m_1} = \frac{b}{2m_2} $[/tex]
or [tex]$ \gamma = \frac{b}{2 \times 1} = \frac{b}{2 \times 2} $[/tex]
γ = b/2 (for 1 kg) and γ = b/4 (for 2 kg)
C = b/2 and C = b/4
b). [tex]$ w_0^2 = \frac{k}{m} \Rightarrow \frac{k}{w_0^2} = \frac{k}{(2 \pi f_0)^2} = \frac{k}{4 \pi^2 f_0^2} $[/tex]
For two particle problem,
[tex]$ w'_0^2 = \sqrt{\frac{k(m_1+m_2)}{m_1 +m_2}} $[/tex]
[tex]$ \therefore T = 2 \pi \sqrt{\frac{m_1 +m_2}{k (m_1 + m_2)}} = 2 \pi \sqrt{ \mu/k}$[/tex]
where, μ is the reduced mass.
This time period is same for both the particles.
c). [tex]$ m =\frac{k}{4 \pi^2 f_0^2}$[/tex]
[tex]$ = \frac{5 \times 10^2}{4 \times 9.14^2 \times 0.2} = 63.4\ kg $[/tex] ( approx.)