g A current loop, carrying a current of 5.6 A, is in the shape of a right triangle with sides 30, 40, and 50 cm. The loop is in a uniform magnetic field of magnitude 62 mT whose direction is parallel to the current in the 50 cm side of the loop. Find the magnitude of (a) the magnetic dipole moment of the loop in amperes-square meters and (b) the torque on the loop.

Respuesta :

Answer:

(a) 0.336 A m²

(b) 0 Nm

Explanation:

(a) Magnetic dipole moment, μ, is given by

[tex]\mu = IA[/tex]

I is the current in the loop and A is the area of the loop.

The loop is a triangle. To find its area, observe that the dimensions form a Pythagorean triple, making it a right-angled triangle with base and height of 30 cm and 40 cm.

[tex]A = \frac{1}{2}\times(0.3\text{ m})\times(0.4\text{ m})=0.06\text{ m}^2[/tex]

[tex]\mu = (5.6\text{ A})(0.06\text{ m}^2) = 0.336\text{ A}\,\text{m}^2[/tex]

(b) Torque is given by

[tex]\tau = \mu B\sin\theta[/tex]

where B is the magnetic field and [tex]\theta[/tex] is the angle between the loop and the magnetic field. Since the field is parallel, [tex]\theta[/tex] is 0.

[tex]\tau = \mu B\sin0 = 0\text{ Nm}[/tex]