Answer:
96.2% of slots meet these specifications.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 0.8750
Standard Deviation, σ = 0.0012
We are given that the distribution of width in inches of slots is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
P( widths between 0.8725 and 0.8775 inch)
[tex]P(0.8725 \leq x \leq 0.8775) = P(\displaystyle\frac{0.8725 - 0.8750}{0.0012} \leq z \leq \displaystyle\frac{0.8775-0.8750}{0.0012}) = P(-2.083 \leq z \leq 2.083)\\\\= P(z \leq 2.083) - P(z < -2.083)\\= 0.981 - 0.019 = 0.962 = 96.2\%[/tex]
[tex]P(0.8725 \leq x \leq 0.8775) = 96.2\%[/tex]
96.2% of slots meet these specifications.