Respuesta :
Answer:
a) [tex]E(X)=\frac{b^2 -a^2}{2(b-a)}=\frac{(b-a)(b+a)}{2*(b-a)}=\frac{b+a}{2}[/tex]
b) [tex]Var(X) =E(X^2) -[E(X)]^2[/tex]
So first we need to find the second central moment like this:
[tex]E(X^2)=\int_{a}^b \frac{x^2}{b-a}dx = \frac{1}{3(b-a)} x^3 \Big|_a^b \[/tex]
[tex]E(X) = \frac{b^3 -a^3}{3(b-a)}=\frac{(b-a)(b^2 +ab +a^2)}{3*(b-a)}=\frac{b^2+ab+a^2}{3}[/tex]
And now we can find the variance like this:
[tex]Var(X) =\frac{b^2+ab+a^2}{3} -[\frac{b+a}{2}]^2[/tex]
[tex]Var(X)=\frac{4b^2 +4ab +4a^2 -3b^2-3a^2-6ab}{12}=\frac{b^2 -2ab +a^2}{12}=\frac{(b-a)^2}{12}[/tex]
c) [tex]F(X)=\int_a^x \frac{1}{b-a} dr =\frac{r}{b-a} \Big|_a^x \ =\frac{x-a}{b-a}[/tex]
Step-by-step explanation:
For this case we assume that [tex]X \sim Unif(a,b)[/tex]
And the density function is given by [tex]f(X)=\frac{1}{b-a}[/tex]
Part a
In order to find the expected value we need to do the following integral:
[tex]E(X)=\int_{a}^b \frac{x}{b-a}dx = \frac{1}{2(b-a)} x^2 \Big|_a^b \[/tex]
[tex]E(X) = \frac{b^2 -a^2}{2(b-a)}=\frac{(b-a)(b+a)}{2*(b-a)}=\frac{b+a}{2}[/tex]
And yes agree with the intuition since is the middle value of the interval (a,b)
Part b
For this case we need to use the definition of variance:
[tex]Var(X) =E(X^2) -[E(X)]^2[/tex]
So first we need to find the second central moment like this:
[tex]E(X^2)=\int_{a}^b \frac{x^2}{b-a}dx = \frac{1}{3(b-a)} x^3 \Big|_a^b \[/tex]
[tex]E(X) = \frac{b^3 -a^3}{3(b-a)}=\frac{(b-a)(b^2 +ab +a^2)}{3*(b-a)}=\frac{b^2+ab+a^2}{3}[/tex]
And now we can find the variance like this:
[tex]Var(X) =\frac{b^2+ab+a^2}{3} -[\frac{b+a}{2}]^2[/tex]
[tex]Var(X)=\frac{4b^2 +4ab +4a^2 -3b^2-3a^2-6ab}{12}=\frac{b^2 -2ab +a^2}{12}=\frac{(b-a)^2}{12}[/tex]
Part c
In order to find the cumulative distribution function we just ned to do the following integral:
[tex]F(X)=\int_a^x \frac{1}{b-a} dr =\frac{r}{b-a} \Big|_a^x \ =\frac{x-a}{b-a}[/tex]