In 1995 a research group led by Eric Cornell and Carl Wiemann at the University of Colorado successfully cooled Rubidium atoms to the 20-200 nK temperature range. Assuming (incorrectly) that the Rubidium atoms behave like particles of a classical ideal gas, calculate the RMS speed of a Rubidium atom at a temperature of 85.0 nK. In the experiments one particular isotope of Rubidium was used, Rubidium-87. The molar mass of this isotope is 86.91 g/mol.

Respuesta :

Answer:

0.00493 m/s

Explanation:

T = Temperature of the isotope = 85 nK

R = Gas constant = 8.341 J/mol K

M = Molar mass of isotope = 86.91 g/mol

Root Mean Square speed is given by

[tex]v_r=\sqrt{\dfrac{3RT}{M}}\\\Rightarrow v_r=\sqrt{\dfrac{3\times 8.314\times 85\times 10^{-9}}{86.91\times 10^{-3}}}\\\Rightarrow v_r=0.00493\ m/s[/tex]

The Root Mean Square speed is 0.00493 m/s