Answer:
[tex]V = 0.157(-36 e^{-3t} + 1.5)[/tex]
[tex]t = 1.24 s[/tex]
Part b)
[tex]EMF = 0.136(-36e^{-3t} + 1.5)[/tex]
Explanation:
magnetic field due to external source is given as
[tex]B = 12 e^{-3t} + 1.5 t + 6[/tex]
area of the loop is given as
[tex]A = \pi r^2[/tex]
[tex]A = \pi(0.05)^2[/tex]
[tex]A = 7.85 \times 10^{-3} m^2[/tex]
Now we have
[tex]\phi = NBAcos0[/tex]
[tex]\phi = (20)(12e^{-3t} + 1.5t + 6)(7.85 \times 10^{-3})[/tex]
[tex]V = \frac{d\phi}{dt}[/tex]
[tex]V = 0.157\frac{d}{dt}(12e^{-3t} + 1.5t + 6)[/tex]
[tex]V = 0.157(-36 e^{-3t} + 1.5)[/tex]
now we need to find the time at which voltage is 0.1 Volts so we have
[tex]0.1 V = 0.157(-36e^{-3t} + 1.5)[/tex]
[tex]t = 1.24 s[/tex]
Part b)
If magnetic field is inclined at an angle of 30 degree with the normal of the loop then
[tex]\phi = NBAcos30[/tex]
now we know that induced EMF is given as
[tex]EMF = \frac{d\phi}{dt}[/tex]
[tex]EMF = NAcos30\frac{dB}{dt}[/tex]
[tex]EMF = (20)(7.85 \times 10^{-3})cos30(\frac{d}{dt}(12e^{-3t} + 1.5t + 6))[/tex]
[tex]EMF = 0.136(-36e^{-3t} + 1.5)[/tex]