Light of wavelength 310 nm strikes a metal whose work function is 2.3 ev. (a) What is the maximum kinetic energy of the ejected electrons? (b) What is the de Broglie wavelength for the electrons that are produced?

Respuesta :

Answer:

a.1.71 eV

b.0.939 nm

Explanation:

We are given that

Wavelength of light =310 nm=[tex]310\times 10^{-9}[/tex] m

Work function=2.3 eV

Mass of electron=[tex]9.1\times 10^{-31}[/tex]Kg

[tex]\nu=\frac{c}{\lambda}[/tex]

a.We have to find the maximum kinetic energy of ejected electron

[tex]K.E=h\nu-w_0[/tex]

[tex]h={6.626\times 10^{-34}[/tex]

[tex]K.E=\frac{6.626\times 10^{-34}\times 3\times10^8}{310\times10^{-9}\times1.6\times 10^{-19}}-2.3[/tex]

[tex]K.E=\frac{1987.8}{496}-2.3[/tex]

K.E=1.71 eV

Hence, the maximum kinetic energy of ejected electron=1.71  eV

b.Kinetic energy =[tex]\frac{p^2}{2m}[/tex]

p=[tex]\sqrt{2\times 9.1\times 10^{-31}\times 1.71\times1.6\times10^{-19}}[/tex]

p=[tex]7.06\times 10^{-25}[/tex]m-s

We know that de brogile wavelength

[tex]\lambda =\frac{h}{p}[/tex]

[tex]\lambda =\frac{6.626\times10^{-34}}{7.06\times 10^{-25}}[/tex]

[tex]\lambda=0.939\times 10^{-9}[/tex]

[tex]\lambda=0.939 nm[/tex]

Hence, the de-brogile  wavelength of ejected electron=0.939 nm.

Answer:

1. 71 eV

0.939 nm

Explanation:

Data:

A. The wavelength of light = [tex]3 * 10^{-9} m[/tex]

work function = 2.3 eV

mass of an electron = [tex]9.1 * 10-^{31} kg[/tex]

the maximum kinetic energy is given by the following equation:

[tex]E_{k} = hv - m_{o} \\ h = 6.626 * 10^{-34}[/tex]

therefore, Ek = [tex]\frac{1987.8}{496} - 2.3\\ = 1.71 eV[/tex]

B. the wavelength is given by:

p = [tex]\sqrt{2*9.1*10^{-31}* 1.71*1.6*10^{-19} }\\= 7.06+ * 10^{-25} ms[/tex]

using the de brogile wavelength equation:

[tex]\lambda = \frac{h}{p}\\ = \frac{6.626*10^{-34} }{7.06*10^{-25} } \\ = 0.939 m[/tex]