Answer: The critical value = 21.920
And the rejection region for this type of chi-square test would be
[tex]X^2> 21.92[/tex]
Step-by-step explanation:
Since we have given that n = 12
'So, we first find the degrees of freedom.
So, degrees of freedom v = n-1 = 12-1 = 11
Now, α = 0.05
since it is two tailed test, so,
[tex]1-\dfrac{\alpha }{2}\\\\=1-\dfrac{0.05}{2}\\\\=1-0.025\\\\=0.975[/tex]
So, using the table of chi square test, we get that
at v = 11, and 0.975,
Critical value = 21.920
Hence, the critical value = 21.920
And the rejection region for this type of chi-square test would be
[tex]X^2> 21.92[/tex]