There are [tex]\dbinom73=\dfrac{7!}{3!(7-3)!}=35[/tex] possible outcomes. At the least, you can draw (1, 2, 3) to get a sum of 6, and at most (5, 6, 7) for a sum of 18. Then the PMF is
[tex]P(W=w)=\begin{cases}\dfrac1{35}&\text{for }w\in\{6,7,17,18\}\\\\\dfrac2{35}&\text{for }w\in\{8,16\}\\\\\dfrac3{35}&\text{for }w\in\{9,15\}\\\\\dfrac4{35}&\text{for }w\in\{10,11,13,14\}\\\\\dfrac17&\text{for }w=12\end{cases}[/tex]
That is, consider all the possible sums and their integer partitions. For example,
6 = 1 + 2 + 3
7 = 1 + 2 + 4
8 = 1 + 2 + 5 = 1 + 3 + 4
9 = 1 + 2 + 6 = 1 + 3 + 5 = 2 + 3 + 4
and so on.
Then the expected value is
[tex]\mathrm E[W]=\displaystyle\sum_wwP(W=w)[/tex]
[tex]\mathrm E[W]=\displaystyle\frac{(6+7+17+18)+2(8+16)+3(9+15)+4(10+11+13+14)+5(12)}{35}[/tex]
[tex]\mathrm E[W]=12[/tex]
We can find the variance via
[tex]\mathrm{Var}[W]=\mathrm E[W^2]-\mathrm E[W]^2[/tex]
[tex]\mathrm E[W^2]=\displaystyle\sum_ww^2P(W=w)[/tex]
[tex]\mathrm E[W^2]=\displaystyle\frac{(6^2+7^2+17^2+18^2)+2(8^2+16^2)+3(9^2+15^2)+4(10^2+11^2+13^2+14^2)+5(12^2)}{35}[/tex]
[tex]\mathrm E[W^2]=152[/tex]
[tex]\implies\mathrm{Var}[W]=152-12^2=8[/tex]